Die Ultraviolettabsorption einiger aromatischer Kohlenwasserstoffe

Von

MAX PESTEMER und JOSEF CECELSKY

Aus dem Institut für theoretische und physikalische Chemie der Universität in Graz

(Mit 2 Textfiguren)

(Vorgelegt in der Sitzung am 22. Oktober 1931)

Der vorliegenden Arbeit lag der Wunsch zugrunde, aus dem Vergleich der Ultraviolett-Absorptionskurven von Diphenvl. Dinaphthyl, Anthrazen, Phenanthren und Pervlen Schlüsse auf deren Struktur zu ziehen und insbesondere etwaige Anhaltspunkte zu gewinnen, ob das Pervlen seinem Aufbau nach mehr dem Naphthalin- oder dem Anthrazentvpus zuneigt. Zu diesem Behufe wurden die Ultraviolett-Absorptionsspektren der obgenannten Substanzen mit einem Quarzspektographen, dessen Optik aus zwei Bergkristallprismen in Kornuscher Anordnung von 42 mm Höhe und 45 mm Kantenlänge und zwei Bergkristallinsen von je 42 mm lichter Weite und einer Brennweite von je 22 cm besteht, aufgenommen. Die Einstellung der Plattenebene war derart gewählt, daß das Spektrum des Ultravioletts von zirka 2100 Å an und das des sichtbaren Lichtes bis zur gelben Doppellinie des Quecksilberbogenspektrums ($\lambda = 2790$ Å) in befriedigender Schärfe auf einer einzigen Platte abgebildet werden konnte. Seine Länge beträgt von 5500 bis 2250 Å 8.72 cm. Die Spaltbreite betrug bei allen Aufnahmen 0.05 mm.

Es gelangte die im Prinzip von MERTON¹ beschriebene und von A. WINTHER² auf das Ultraviolett übertragene Methode zur Anwendung, bei der die Absorptionsspektren der zu untersuchenden Substanz und des Lösungsmittels zeitlich hintereinander mit konstanter Lichtquelle aufgenommen werden und durch genaue

¹ TH. J. MERTON, JOURN. Chem. Soc. London 103, 1931, S. 124.

² A. WINTHER, BAGGESGAARD-RASMUSSEN und F. SCHREINER, Zs. f. wiss. Photographie 22, 1922, S. 33; H. LEY, Handb. d. Physik (Springer, 1928) 19, S. 647.

Parallelverschiebung der Platte übereinander und möglichst scharf angrenzend zur Abbildung gebracht werden. Mittels eines feinmaschigen, geschwärzten Netzes von bekannter, im König-Martensschen Spektralphotometer ermittelter Extinktion, wird hiebei das das Lösungsmittel passierende Lichtbündel um einen bekannten Betrag geschwächt.

Es wurden drei geschwärzte Kupferdrahtnetze von 10.000 bzw. 900 Maschen pro Quadratzentimeter verwendet, von denen

```
Netz
I die
Extinktion
E_1 = 0.595,
...
...
...
...
E_2 = 1.186,
...
...
...
E_3 = 1.284
...
...
E_3 = 1.284
...
...
...
...
E_4 = 1.284
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
```

hatte.

Bei den Stellen gleicher Schwärzung zweier angrenzender Spektren muß die Extinktion des gelösten Stoffes gleich sein der des betreffenden Netzes. Aus dieser errechnet sich die dekadische Molextinktion ε nach der Formel $E = \varepsilon . c . d$, wobei c die molare Konzentration der untersuchten Substanz, d die Schichtdicke der durchstrahlten Lösung in Zentimetern bedeutet³. Die Ermittlung der Wellenlängen der Stellen gleicher Schwärzung erfolgte visuell im Zeißschen Vergleichsmikroskop durch Abstandsbestimmung von einer leicht erkennbaren Bezugslinie.

Die so gewonnenen Werte wurden graphisch mittels einer Eichkurve, die an Hand der Spektren des Nickel- und Eisenfunkens konstruiert worden war, in λ -Werte überführt.

Da sich aus Gründen der leichteren Vergleichbarkeit ein linienreiches Spektrum gut bewährt, wurde als Lichtquelle der Eisen-Nickel-Funke⁴ gewählt.

Sämtliche Substanzen wurden in Hexan gelöst aufgenommen. Die Wahl fiel deshalb auf dieses Solvens, da nach den Untersuchungen KLINGSTEDTS⁵ nur die Absorptionsspektren der in gesättigten Kohlenwasserstoffen gelösten Substanzen untereinander vergleichbar und am ähnlichsten den Dampfspektren sind. Diese Tatsache ist nach V. HENRI⁶ mit der Abwesenheit eines Dipolmoments im Hexan in Verbindung zu bringen. (Ein Dipol-

114

³ Siehe z. B.: J. Eggert, Lehrb. d. phys. Chemie (Hirzel, 1926), S. 479.

⁴ LEY und VOLBERT, Zs. f. wiss. Photographie 23, 1924, S. 41.

⁵ KLINGSTEDT, Compt. rend. 174, S. 812.

⁶ V. HENRI, Structure des molecules, S. 23 und 25.

moment könnte die Elektronenhülle deformieren und als Folge davon die Absorptionsspektren verändern.)

Die Absorptionsgefäße bestehen aus einem nach den Angaben Scheißes hergestellten Küvettensatz Zeißscher Ausführung, mit dem man Schichtdicken von 0.2 bis 100 mm in logarithmischer Abstufung herstellen kann. Die Küvetten wurden in einem Plotnikowschen Kippstativ⁷ befestigt.

Die Belichtung wurde mittels einer vor dem Spaltkopf angebrachten schwenkbaren Scheibe vorgenommen. Die Belichtungszeiten, die bei den meisten Substanzen 30 Sekunden betrugen, wurden mittels Stoppuhr gemessen. Der maximale Belichtungsfehler betrug 0·1 Sekunde und lag im Durchschnitt unter diesem Betrage. Kippstativ, Kondensorlinse, Blende sowie das Funkenstativ waren auf einer optischen Bank von Zeiß montiert, welche genau in der optischen Achse des Spektrographen aufgestellt war.

Auf die Herstellung und Reinigung der untersuchten Substanzen wurde größte Sorgfalt verwendet, um eindeutig die Spektren der reinen Körper zu erhalten. Bei allen chemischen Operationen wurden zur Vermeidung von störenden Verunreinigungen Schliffapparaturen und zur Filtration Schottsche Glassintertiegel benützt.

Das Kahlbaumsche Präparat "*Hexan* aus Petroleum" wurde in einer mit Fraktionierkolonne versehenen Schliffapparatur destilliert und die Hauptfraktion innerhalb 66—67° aufgefangen und vor der Verwendung im Spektographen auf optische Leere geprüft.

Diphenyl (Kahlbaum für wissenschaftliche Zwecke) wurde unter Minderdruck viermal im Dreikugelrohre destilliert (F. P. 70° unkorr.).

 α , α '-Dinaphthyl wurde nach den Angaben ULLMANNS und BIELECKIS⁸ aus α -Naphthylamin hergestellt. α -Naphthylamin wurde mittels Sandmeyerscher Reaktion in α -Jodnaphthalin übergeführt.

⁷ J. PLOTNIKOW, Photochem. Arbeitsmethoden im Dienste der Biologie aus E. Abderhaldens Handb. d. biolog. Arbeitsmethoden. 3. Aufl., II., 1930, S. 1827; das Kippstativ wurde für Scheibesche Absorptions-Küvetten und optische Bank vom hiesigen Institutsmechaniker A. HARZL umkonstruiert und bewährte sich durch seine zweckmäßige und bequeme Handhabung.

⁸ ULLMANN und BIELECKI, Ber. D. ch. G. 34, S. 2184.

Das so erhaltene Produkt wurde nach vorhergehender Destillation mit Kupferpulver vermengt und kurze Zeit auf 180° im Ölbade erhitzt. Durch Extraktion mit Alkohol läßt sich das a, a'-Dinaphthyl in großer Reinheit isolieren. Für die Aufnahme wurde jedoch noch sechsmal aus absolutem Alkohol und trockenem Petroläther umkristallisiert (F. P. 155° unkorr.).

Da in dem von Kahlbaum bezogenen Phenanthren durch das Auftreten von Fluoreszenz Anwesenheit von Anthrazen festgestellt wurde, wurden 20 g in gesättigter xylolischer Lösung mittels einer Quecksilberdampfquarzlampe unter Bestrahlung zum Sieden erhitzt? (Dauer der Bestrahlung 17 Stunden), so lange bis die Fluoreszenz der Lösung unter Abscheidung von Dianthrazen und gleichzeitiger Farbvertiefung von farblos nach gelb, nicht mehr wahrnehmbar war. Dann wurde das Produkt nach zweimaliger Umkristallisation aus Alkohol und Xylol einer viermaligen Vakuumdestillation im Dreikugelrohre unterworfen (F. P. 100°).

Das uns in entgegenkommender Weise von Prof. A. ZINKE zur Verfügung gestellte *Perylen* wurde vierzehnmal abwechselnd aus peinlichst gereinigtem Xylol, Toluol und Nitrobenzol umkristallisiert (F. P. 278°).

Naphthalin (Bez.: Kahlbaum für kalorimetrische Bestimmungen) wurde ohne weitere Reinigung aufgenommen.

Die oben beschriebene Apparatur wurde durch Vergleich der Werte für die Absorption von wässeriger Kaliumnitratlösung, welche wir bei Testaufnahmen erhielten, mit den von Ley und Volbert⁴ zusammengestellten, sowie durch die Übereinstimmung eines von uns aufgenommenen Naphthalinspektrums mit dem von G. LASZLO¹⁰ geeicht. Die Fehlergrenze beträgt in den ansteigenden Ästen bis zu 2%, in den flachen Teilen der Maxima und Minima bis zu 5%. Die Messung kann jedoch durch Bestimmung mehrerer nahe beieinander liegender Punkte, wie dies in vorliegender Arbeit durchwegs gehandhabt wurde, durch Mittelwertbildung beträchtlich genauer gemacht werden.

Die Versuchsergebnisse sind in den Tabellen 1-5 wiedergegeben und in den Figuren 1 und 2 graphisch dargestellt.

⁹ N. S. CAPPER und J. K. MARSH, Journ. Chem. Soc. London, 1926, S. 742.

¹⁰ G. DE LASZLO, Z. f. phys. Chem. 118, 1925, S. 380.

en- ner	mer tzes	Diphenyl in Hexan			
Platt numn	Numr d. Net	Schichtdicke in mm	Konzentration in Molen	lg s	λ
18	I	100.1	$4.13.10^{-1}$	0.158 - 1	3305
18	I	50.76	$4.13.10^{-1}$	0.454 - 1	3274
18	II	100.1	$4.13.10^{-1}$	0.458 - 1	3248
18	Ι	20.09	$4.13.10^{-1}$	0.854 - 1	3180
18	п	20.09	$4.13.10^{-1}$	0.155	3164
18	I	9.99	$4.13.10^{-1}$	0.158	3157
18	I	5.02	$4.13.10^{-1}$	0.458	3131
18	I	9:99	$4.13.10^{-1}$	0.460	3131
18	I	2.217	$4.13.10^{-1}$	0.758	3087
18	II	5.02	$4.13.10^{-1}$	0.760	3099
18	II	2.517	$4.13.10^{-1}$	1.060	3055
18	Ι	1.010	$4.13.10^{-1}$	1.155	3034
18	II	1.010	$4.13.10^{-1}$	1.456	3000
18	I	0.4	$4.13.10^{-1}$	1.557	2982
12	II	50.76	5.10-3	1.670	2951
19	I	50.76	$1.65.10^{-3}$	1.852	2944
19	II	100.1	$1.65.10^{-3}$	1.856	2944
18	II	0.4	$4.13.10^{-1}$	1.858	2947
18	I	0.2	$4.13.10^{-1}$	1.858	2947
12	II	20.09	5.10^{-3}	2.072	2907
19	. H	50.76	$1.65.10^{-3}$	2.151	2902
19	I	20.09	$1.65.10^{-3}$	$2 \cdot 253$	2887
12	п	9.99	5.10^{-3}	2.376	2877
19	II	20.09	$1.65.10^{3}$	2.552	2863
19	I	9.99	$1.65.10^{-3}$	2.557	2862
14	11	100.1	$3 \cdot 2.10^{-4}$	2.568	2867
12	11	5.02	5.10^{-3}	2.675	2846
19	II	9.99	$1.65.10^{-3}$	2.857	2829
19	I	5.02	$1.65.10^{-3}$	2.857	2824
14	II	50.76	$3 \cdot 2.10^{-4}$	2.864	2826
12	II	2.517	5.10^{-3}	2.975	2818
19	II	5.02	$1.65.10^{-3}$	3•156	2804
12	II	1.010	5.10^{-3}	3.371	2783
19	п	2.517	$1.65.10^{-3}$	$3 \cdot 452$	2768
19	·I	1.010	$1.65.10^{-3}$	3.553	2747
14	II -	9.99	3.2.10-4	3.569	2754

Tabelle 1.

en- aer	ner szes	Diphenyl in Hexan			
Platt numr	Numi d. Net	Schichtdicke in <i>mm</i>	Konzentration in Molen	lg e	λ
12	11	0.4	5.10^{-3}	3.773	2716
19	п	1.010	$1.65.10^{-3}$	$3 \cdot 852$	2695
14	п	5.05	$3.2.10^{-4}$	3.920	2693
19	Ι	0.4	$1.65.10^{-3}$	3.956	2666
12	п	0.2	5.10^{-3}	4.074	2666
14	II	2.517	$3.2.10^{-4}$	4.168	2648, 2260
19	п	0.4	$1.65.10^{-3}$	$4 \cdot 254$	2582, 2348
19	I	0.2	$1.65.10^{-3}$	4.257	2571, 2382

(Zu Tabelle 1.)

Tabelle	e 2.
---------	------

en- ner	ner zes	ά-α'-Dinaphth		yl in Hexa	an
Platt nnmn	Numr d. Net	Schichtdicke in <i>mm</i>	Konzentration in Molen	lg e	λ
17	I	100.0	$1.73.10^{-2}$	0.538	3941
17	I	50.76	$1.73.10^{-2}$	0.832	3742
17	ш	50.76	$1.73.10^{-2}$	1.166	3516
17	I	20.09	$1.73.10^{-2}$	$1 \cdot 235$	3491
15	п	100.1	5.10^{-3}	1.375	3479
17	I	9.99	$1.73.10^{-2}$	1.538	3417
17	III	20.09	$1.73.10^{-2}$	1.568	3415
15	II	50.76	5.10^{-3}	1.670	3405
17	I	$5 \cdot 02$	$1.73.10^{-2}$	1.837	3377
17	III	9.99	$1.73.10^{-2}$	1.872	3379
17	I	2.517	$1.73.10^{-2}$	2.138	3341
17	III	5.02	$1.73.10^{-2}$	$2 \cdot 172$	3342
15	II	9.99	5.10^{-3}	2.376	3322
17	III	2.517	$1.73.10^{-2}$	2.471	3309
17	I	1.010	$1.73.10^{-2}$	2.534	3304
15	п	5.02	5.10^{-3}	2.675	3289
17	ш	1.010	$1.73.10^{-2}$	2.868	3266
17	I	0.4	$1.73.10^{-2}$	$2 \cdot 936$	3261
15	п	2.517	5.10^{-3}	2.975	3256
17	I	0.2	$1.73.10^{-2}$	3.237	3182
17	III	0.2	$1.73.10^{-2}$	3.270	3192
15	п	1.010	5.10^{3}	3.371	3172
16	II	100.1	5.10^{-5}	3.375	3175

en- 1er	ner zes	α-α'-Dinaphthyl in Hexan			
Platt numn	Numi d. Net	Schichtdicke in <i>mm</i>	Konzentration in Molen	lg e	λ
17	II	0.2	$1.73.10^{-2}$	3.571	3128
16	II	50.76	5.10^{-5}	3.670	3100
15	II	0.4	5.10^{-3}	3.773	3039
16	II	20.09	5.10^{-5}	$4 \cdot 072$	2975, 2747, 2400
15	n	0.2	5.10^{-3}	4.074	2985, 2397
16	п	$9 \cdot 99$	5.10^{-5}	4.376	2367
16	п	5.02	5.10^{-5}	4.675	2350
16	п	2.517	5.10^{-5}	$4 \cdot 975$	2316
16	п	1.010	5.10^{-5}	5.371	—

(Zu Tabelle 2.)

Tabelle	3.
---------	----

en- ner	mer tzes	Anthrazen in Hexan			
Plate	Num d. Net	Schichtdicke in <i>mm</i>	Konzentration in Molen	lg s	λ in Å
10	II	100.1	5.10^{-3}	1.375	3898
10	п	50.76	5.10^{-3}	1.670	3877
10	п	20.09	5.10^{-3}	2.072	3847
10	п	9.99	5.10^{-3}	2.376	3838
11	п	100.1	$3 \cdot 2.10^{-3}$	2.568	3822, 2880, 2563
10	11	5.02	5.10^{-3}	2.675	3827, 2917, 2725
11	п	50.76	$3 \cdot 2.10^{-3}$	2.864	3817, 3008, 2692
23	I	100.1	$7 \cdot 13.10^{-3}$	$2 \cdot 921$	3808, 3033, 2659
10	11	2.517	5.10^{-3}	2.975	3813, 3037, 2666
23	I	50.76	$7.13.10^{-5}$	$3 \cdot 215$	3792, 3170, 2631
23	III	100.1	$7.13.10^{-5}$	3.256	3792, 3178, 2617
11	II	20.09	$3 \cdot 2.10^{-3}$	3.266	3796
10	II	1.010	5.10^{-3}	3.371	3795, 3174, 2621
23	III	50.76	$7.13.10^{-5}$	3.550	$3782, 3687, 3608 \\ 3489, 3435, 3329 \\ 2600$
11	п	9.99	3·2.10 ⁻³	3•569	$3792, 3694, 3616 \\ 3489, 3427, 3332 \\ 2606$
23	Ι	20.09	$7.13.10^{-5}$	3.619	$3778, 3698, 3604 \\ 3494, 2598$
10	II	0.4	5.10^{-3}	3.773	$\begin{array}{c} 3776, 3705, 3606\\ 3500, 3423, 3345\\ 2592 \end{array}$

en- ner	ner zes	Anthrazen in Hexan			- Andrew Marting Print - 7, 1
Platte numn	Numr d. Net	Schichtdicke in <i>mm</i>	Konzentration in Molen	lg ε	λ in Å
11	II	5.02	$3 \cdot 2.10^{-3}$	3.920	$3769, 3734, 3586 \\3537, 2586$
23	Ι	$9 \cdot 99$	$7.13.10^{-5}$	$3 \cdot 922$	2577
23	III	20·09	$7.13.10^{-5}$	3.923	$3762, 3741, 3575 \\3553, 2577$
10	11	$0\cdot 2$	5.10^{-3}	4.074	2581
11	п	$2 \cdot 517$	$3 \cdot 2.10^{-3}$	4.168	2573, 2288
23	I	5.02	$7.12.10^{-5}$	4.221	2527, 2302
23	ш	9.99	$7.13.10^{-5}$	$4 \cdot 253$	2567, 2312
23	I	2.517	$7.13.10^{-5}$	4.521	2559, 2343
23	III	5.02	$7.13.10^{-5}$	4.555	2560, 2349
11	п	1.010	$3 \cdot 2.10^{-3}$	4.564	2562, 2348
23	III	2.517	$7.13.10^{-5}$	4.855	2551, 2397
23	I	1.010	$7.13.10^{-5}$	4.917	2549, 2394
11	II	0.4	$3 \cdot 2.10^{-3}$	4.967	2548, 2401
23	ш	1.010	$7.13.10^{-5}$	$5 \cdot 251$	2537, 2494
11	II	0.5	$3 \cdot 2.10^{-3}$	$5 \cdot 268$	2538, 2486
23	I.	0.4	$7.13.10^{-5}$	5.319	2534, 2498
23	I	0.2	$7.13.10^{-5}$	5.621	_

(Zu Tabelle 3.)

Tabelle	4.
---------	----

en- ner	ner zes	Phenanthren in Hexan			
Platt	Numr d. Net	Schichtdicke in <i>mm</i>	Konzentration in Molen	lg e	λ in Å
24	I	100.1	$5.12.10^{-3}$	1.065	3534
29	Ι	100.1	$5 \cdot 00.10^{3}$	1.076	3582
24	Ι	50.76	$5.12.10^{-3}$	1.360	3526
29	I	50.76	$5.00.10^{-3}$	1.370	3518
24	III	100.0	$5 \cdot 12.10^{-3}$	1.400	3527
29	III	100.1	$5.00.10^{-3}$	1.410	3517
24	ш	50.76	$5 \cdot 12.10^{-3}$	1.695	3492
29	III	50.76	$5.00.10^{-3}$	1.720	3487
24	Ι	20.09	$5.12.10^{-3}$	1.762	3491
29	I	20.09	$5.00.10^{-3}$	1.773	3486, 3435, 3428
25	I	100.1	$6.4.10^{-4}$	1.969	$3474, 3442, 3405 \\3352, 3329$
30	Ι	100.1	$6.02.10^{-4}$	1.996	3475, 3448, 3408

en- ler	ner zes	Phenanthren in H		in Hexan	Hexan	
Platte numn	Numn d. Net	Schichtdicke in mm	Konzentration in Molen	lg s	λ in Å	
24	1	9.99	$5.12.10^{-3}$	2.066	3473, 3452, 3408	
29	I	9.99	$5^{\cdot}00.10^{3}$	$2 \cdot 076$	3477, 3446, 3408	
24	ш	20.09	$5 \cdot 12.10^{-3}$	$2 \cdot 097$	$3477, 3448, 3408 \\3353, 3335$	
29	III	$9 \cdot 99$	$5.00.10^{-3}$	$2 \cdot 107$	3477, 3446, 3407	
25	Ι	50.76	$6.4.10^{-4}$	$2 \cdot 264$	$3471, 3445, 3393 \\3362, 3317$	
30	- I	50.76	$6.02.10^{-4}$	2·290	$3467, 3448, 3392 \\ 3367, 3315, 3203 \\ 3172$	
25	III	100.1	6.4.10-4	2.302	$3467, 3445, 3396 \\ 3362, 3309, 3203 \\ 3159$	
25	ш	100.1	6.4.10-4	2.302	$3467, 3445, 3396 \\ 3362, 3309, 3203 \\ 3159$	
30	III	100.1	$6.02.10^{-4}$	2.330	$\begin{array}{c} \textbf{3473, 3452, 3389} \\ \textbf{3366, 3314, 3205} \\ \textbf{3177} \end{array}$	
24	1	5.02	$5.12.10^{-3}$	2.362	$\begin{array}{c} 3461, 3396, 3377\\ 3287, 3048, 3307\\ 3176 \end{array}$	
29	1	9.99	$5.00.10^{-3}$	2.375	3477, 3446, 3408	
29	III	9.99	$5.00.10^{-3}$	2.410	3045	
30	III	5.076	$6.02.10^{-4}$	2.625	3026	
29	I	2.517	$5.00.10^{-3}$	2.675	3022	
30	Ι	20.09	$6.02.10^{-4}$	2.694	3022	
29	III	5.02	$5.00.10^{-3}$	2.708	3025	
30	I	2.517	$6.92.10^{-4}$	2.996	3001	
24	III	2.517	$5.12.10^{-4}$	3.000	2986	
29	III	2.517	$5.00.10^{-3}$	3.010	2999	
39	III	20.09	$6.02.10^{-4}$	$3 \cdot 029$	3003	
29	I	1.010	$5.00.10^{-3}$	3.072	2995	
30	I	$5 \cdot 02$	$6.02.10^{-4}$	$3 \cdot 296$	2968	
30	III	9.99	$6.02.10^{-4}$	3.300	2970	
24	ш	1.010	$5.12.10^{-3}$	3.396	3973	
29	III	1.010	$5.00.10^{-3}$	3.406	2971	
24	1	0.4	$5.12.10^{-3}$	3.464	2963	
29	I	0.4	$5.00.10^{-3}$	3.474	2967	
30	I	2.517	$6.02.10^{-4}$	3.595	2956	

(Zu Tabelle 4.)

en- ner	ner tzes	Phenanthren in Hexan			
Platt numr	Num d. Net	Schichtdicke in <i>mm</i>	Konzentration in Molen	lg e	λ in Å
30	III	5.02	$6.02.10^{-4}$	3.629	2958
24	I	0.2	$5 \cdot 12.10^{-3}$	3.765	2953
29	I	0.4	$5.00.10^{-3}$	3.775	2956
29	III	0.4	$5.00.10^{-3}$	3.897	2953
25	ш	2.517	$6 \cdot 4.10^{-4}$	$3 \cdot 902$	2958
30	ш	2.517	$6.02.10^{-4}$	3.930	2946, 2888, 2839
25	I	1.010	$6.4.10^{-4}$	3.964	2945, 2884, 2829
24	III	0.2	$5 \cdot 12.10^{-3}$	4.095	2938, 2827, 2907
29	III	0.2	$5 \cdot 00.10^{-3}$	4.190	2942, 2900, 2839
25	III	1.010	$6 \cdot 4.10^{-4}$	$4 \cdot 299$	2649, 2311
30	III	1.010	$6 \cdot 02.10^{-4}$	4.325	2624, 2322
25	I	0.4	$4 \cdot 36.10^{-4}$	4.367	2619, 2330
30	I	0•4	$6 \cdot 02.10^{-4}$	$4 \cdot 393$	3612, 2330
25	, I	0.2	$6.4.10^{-4}$	$4 \cdot 668$	2583, 2637
30	1	0.2	$6.02.10^{-4}$	4.694	2548, 2398
25	III	0.4	$6.4.10^{-4}$	4.700	2562, 2395
30	III	0.4	$6 \cdot 02.10^{-4}$	4.727	2547, 2405
25	III	0.2	$6 \cdot 4.10^{-4}$	5.002	2524, 2468
30	III	0.2	$6 \cdot 02.10^{-4}$	5.030	

(Zu Tabelle 4.)

Tabelle	5.
---------	----

Platten- nummer	Nummer d. Netzes	Perylen in Hexan			
		Schichtdicke in <i>mm</i>	Konzentration in Molen	lg s	λ in Å
27	I	100.1	$8.72.10^{-4}$	1.834	5203
26	I	100.1	$5.47.10^{-4}$	2.037	5165
27	I	50.76	$8.72.10^{-4}$	$2 \cdot 129$	5108, 4912, 4857
27	III	100.1	$8.72.10^{-4}$	2·168	5172
26	1	50.76	$5.47.10^{-4}$	$2 \cdot 332$	5120, 5061
26	Ш	100.1	$5.47.10^{-4}$	2.371	4823, 4681, 4590
27	III	50.76	$8.72.10^{-4}$	$2 \cdot 463$	$5142, 5028, 4789\\4716, 4574$
27	I	20.09	$8.72.10^{-4}$	2.531	4533
26	ш	50.76	$5 \cdot 47.10^{-4}$	2.666	4522
26	I	20.09	$5 \cdot 47.10^{-4}$	$2 \cdot 713$	4511, 3099, 3071
27	Ι	9.99	$8.72.10^{-4}$	2.834	4498, 3216, 3015

Platten- nummer	Nummer d. Netzes	Perylen in Hexan			
		Schichtdicke in mm	Konzentration in Molen	lg e	λ in Å
97	ти	20.09	$8.72 \cdot 10^{-4}$	2.865	4503 3217 3027
26	T	9.99	$5.47 \ 10^{-4}$	3.037	4487 3341 2967
26	ш	20.09	$5.47.10^{-4}$	3.068	4484, 3357, 2952
27	1	5.02	$8.72.10^{-4}$	3.134	4477, 3435, 2932
27	m	9.99	$8.72.10^{-4}$	3.168	4478, 3376, 2941
26	I	5.02	$5.47.10^{-4}$	3.337	4457, 3543, 2814
26	III	9.99	$5.47.10^{-4}$	3.372	4459, 3552, 2812
27	I	2.517	$8.72.10^{-4}$	$3 \cdot 434$	4458, 2762
27	III	5.02	$8.72.10^{-4}$	3.467	4462, 3568, 2761
26	I	2.517	$5 \cdot 47.10^{-4}$	$3 \cdot 632$	4433, 3636, 2715
26	ш	5.02	$5.47.10^{-4}$	3.670	4435, 3634, 2716
27	III	2.517	$8.72.10^{-4}$	3.767	3439, 3658, 2705
27	I	1.010	$8.72.10^{-4}$	$3 \cdot 829$	4419, 3767, 2691
26	III ·	2.517	$5 \cdot 47.10^{-4}$	3.970	4414, 3796, 2678
26	I	1.010	$5.47.10^{-4}$	4.033	4405, 3819, 2658
27	III	1.010	8.72.10-4	4.104	$\begin{array}{r} 4398, 3959, 3893 \\ 3827, 2613 \end{array}$
27	1	0.4	$8.72.10^{-4}$	4.231	$\begin{array}{c} 4399,4211,4148\\ 3998,2594,2352 \end{array}$
26	111	1.010	$5.47.10^{-4}$	4.367	$\begin{array}{c} 4382, 4248, 4136\\ 4021, 2568, 2404 \end{array}$
26	I	0.4	$5.47.10^{-4}$	4.435	$\begin{array}{r} 4392, 4265, 4121 \\ 4049, 2568 \end{array}$
27	I	0.2	$8.72.10^{-4}$	4.533	4372, 4329, 2562
27	ш	0.4	$8.72.10^{-4}$	4.566	$\begin{array}{c} 4378, 4273, 4109\\ 4058, 2559, 2421 \end{array}$
26	I	0.2	$5.47.10^{-4}$	4.736	2508, 2498
26	ш	0.4	$5.47.10^{-4}$	4.769	2542, 2503
27	III	0.2	$8.72.10^{-4}$	4.867	—

(Zu Tabelle 5.)

Von den untersuchten Substanzen wurden Anthrazen und Phenanthren in Alkohol von V. HENRI¹¹, in Phenetol von CAPPER und MARSH⁹ untersucht. Qualitative Untersuchungen der Ultraviolett-Absorptionen von Anthrazen, Phenanthren und Diphenyl

¹¹ V. HENRI, Photochemie, 1919, S. 127.

liegen von Baly und Tuck vor ¹². Wegen der Verschiedenheit der Lösungsmittel bzw. auch der Meßmethoden können die Werte der genannten Autoren zu Vergleichszwecken nicht herangezogen werden, weshalb es notwendig war, die Ultraviolett-Absorptionen dieser Substanzen unter gleichen Bedingungen in Hexan als Lösungsmittel aufzunehmen. Während der Durchführung unserer Arbeit erschienen Publikationen von D. RADULESCU und Mitarbeitern¹⁸, in denen auch Absorptionskurven von Anthrazen und Perylen im ganzen Ultraviolett sowie des Phenanthrens im Wellenlängenbereich von $\lambda = 200-310 \ \mu\mu$ veröffentlicht werden. Die Wellenlängenwerte der Maxima dieser Kurven stimmen, von kleinen Abweichungen der beiden ersten langwelligen Banden des Perylens abgesehen, mit den unseren gut überein. Der Gangunterschied von rund 1 bei den Werten von log ε ist wahrscheinlich dadurch zu erklären, daß die Schichtdickenangaben von D. RADULESCU in Millimetern, statt. wie üblich, in Zentimetern in die Extinktionsformel eingesetzt wurden⁴, ¹⁰, ¹⁴. Obwohl in den letztgenannten Arbeiten das Lösungsmittel nicht angegeben wird, ist aus der Übereinstimmung der Werte zu vermuten, daß ein dem Hexan zumindest ähnlicher gesättigter Kohlenwasserstoff verwendet wurde.

Bei der

Diskussion

der vorliegenden Absorptionskurven (Fig. 1 und 2) wollen wir die Betrachtungsweise von A. BURAWOY¹⁵ anwenden, der in seiner Arbeit "Absorptionsspektren und Konstitution" die Banden der Absorptionsspektren in sogenannte *R*-Banden, deren Chromophore ungesättigte Atome von Radikalen oder Doppelbindungsgruppen sind, und in *K*-Banden, das sind solche, bei denen konjugierte Systeme als Chromophore wirken, einteilt. Diese zwei Arten von Banden unterscheiden sich dadurch, daß die Maxima der *R*-Banden unter, die der *K*-Banden über einem Extinktionswert von etwa log $\varepsilon = 3.6$ liegen, und dadurch, daß die *R*-Banden mit zunehmender Dielektrizitätskonstante des Lö-

¹² E. C. C. BALY und W. B. TUCK, Journ. Chem. Soc. London 93, 1908, S. 1902.

¹³ D. RADULESCU, G. OSTROGOVICH, Ber. D. ch. G. 64, 1931, S. 2233; D. RADULESCU, G. OSTROGOVICH, F. BARBULESCU, Ber. D. ch. G. 64, 1931, S. 2441.

¹⁴ Siehe Ley, Handb. d. Physik, Geiger-Scheel, 19, 1298, S. 637.

¹⁵ A. BURAWOY, Ber. D. ch. G. 63, 1930, S. 3155; 64, 1931, S. 462; 64, 1931, S. 1635.

Fig. 2.

sungsmittels nach Ultraviolett, die K-Banden dagegen nach Rot verschoben werden. Betrachtet man nun im Sinne dieser An-

nahmen den Benzolkern als R-Chromophor, so erkennt man

auf Grund unserer gemessenen Kurven deutlich, wie bei der Ver-

kettung zweier Benzolkerne zu Diphenyl \checkmark eine typische K-Bande

entsteht, die so stark in den Vordergrund tritt, daß eine Überlagerung der Benzolbanden, die man vermuten möchte, zumindestens innerhalb unserer Meßgenauigkeit nicht festgestellt werden kann. Anders liegen die Verhältnisse bei der Kondensation von Benzolkernen zu höheren aromatischen Kohlenwasserstoffen, wie zu Naphthalin, Anthrazen, Phenanthren und Perylen. Einerseits weist hier die mit der Zahl der Benzolringe zunehmende Intensität der Banden auf steigende Einwirkung einer Konjugierung hin, anderseits bleiben den Benzolbanden analoge R-Banden erhalten oder überlagern sich den hohen K-Banden. In Figur 1 kommt eine regelmäßige Verschiebung der langwelligen Banden sowohl nach höheren Extinktions- als nach größeren \u00e5-Werten bei Kondensation von steigender Zahl von Benzolkernen deutlich zum Ausdruck. Für Benzol, Naphthalin und Anthrazen hat schon H. Ley¹⁶ auf diese Regelmäßigkeit hingewiesen, das Perylen schließt sich dieser Reihe sinngemäß an. Daraus geht aber auch hervor, daß es in Hinblick auf Absorptionsuntersuchungen schwer möglich sein wird, dem Pervlen einseitig einen ausgesprochenen Naphthalin- oder Anthrazencharakter zuzuordnen.

Besonders die Tatsache, daß das Dinaphthyl ebenso wie

¹⁶ H. LEY, Handb. d. Phys., Geiger-Scheel, 21, 1929, S. 97.

Ultraviolettabsorption einiger aromatischer Kohlenwasserstoffe127

das Diphenyl eine reine Konjugationsbande aufweist, während das

kondensiertes System verhält, weist deutlich darauf hin, daß das Perylen auch keineswegs als bloße Konjugierung zweier Naphthalin-Chromophore (wie das Dinaphthyl) aufzufassen ist, sondern als eigener Chromophor bzw. als eigenes System von solchen angesprochen werden muß.